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1 Introduction

In the search of a model describing realistic physics, many string compactification sce-

narios have been developed and studied. One remarkable success is that of compactifi-

cation on a Calabi-Yau three-fold [1], which gives a supersymmetric Minkowski vacuum

in four-dimensional effective gauge theory. However, this configuration is insufficient as a

candidate of a realistic physical vacuum in string theory because it assumes four significant

simplifications: constant dilaton, vanishing H-flux, flat Minkowski space, and N = 1 su-

persymmetry. Once some of these assumptions are relaxed, a rich structure emerges in the

compactified space, which also affects the four-dimensional effective theory. In particular,

on a six-dimensional internal space with SU(3)-structure [2], a non-vanishing NS-NS three-

form flux H yields torsion. Such geometries have been investigated both in mathematics [3]

and in string theory [4]. Furthermore, Hitchin’s generalized geometry [5] contains informa-

tion about the SU(3)-structure manifold with torsion, and provides a powerful technique

in the investigation of four-dimensional N = 2 and N = 1 supergravity theories (see [6–16]

and references therein).

Four-dimensional N = 2 (gauged) supergravity is not only dynamical but also control-

lable by two moduli spaces, namely a special geometry and a quaternionic geometry [17].

Generalized geometry also has two moduli spaces described as special geometries. Due to

the existence of these moduli spaces, one can embed the four-dimensional N = 2 supergrav-

ity into type IIA (or IIB) string theory compactified on a generalized geometry. Various

functions in four-dimensional spacetime such as the Kähler potential and the superpoten-

tial are written in terms of the prepotentials on the moduli spaces and of various fluxes such

as geometric fluxes and form fluxes on the internal space. The most generic forms of these

functions are described by Graña, Louis and Waldram [7], and Benmachiche and Grimm

demonstrated a consistent procedure to truncate the model from N = 2 to N = 1 su-

persymmetry via an orientifold projection on generalized geometry [11]. Graña, Minasian,

Petrini and Tomasiello performed a clever application of “scanning” technique to N = 1

vacua on parallelizable nilmanifolds and solvmanifolds described as generalized geome-

tries with a single SU(3)-structure [12]. In [15] Cassani and Bilal carefully investigated the

Kähler potential and superpotential in four-dimensional N = 1 supergravity obtained from

type IIA string theory compactified on generalized geometry with SU(3)×SU(3) structures.

String compactifications in the presence of fluxes also give rise to non-abelian gauge

symmetries in four-dimensional models, whereas the compactification on a Calabi-Yau

space does not. In order to realize such a gauge symmetry, one introduces a twist in

the (generalized) Scherk-Schwarz compactification procedure [18–20], possibly on some

extended internal space, which yields “nongeometric” fluxes [21, 22] as well as geometric

fluxes. One candidate for the internal space is generalized geometry with SU(3) × SU(3)

structures [7, 16]. Other techniques, such as compactification in the framework of doubled

space formalism [23, 24], have also been investigated to explain nongeometric fluxes as

arising from string dualities.

The aim of this paper is to realize consistent supersymmetric Anti-de Sitter (AdS)

vacua as well as Minkowski vacua in type IIA theory with or without Ramond-Ramond
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fluxes [25–30]. One way to obtain such vacua is by use of the attractor mechanism. Orig-

inally the attractor mechanism was developed in the analysis of the entropy of extremal

(non-)BPS black holes in type II theories [31–37]. This mechanism has been applied in the

search of flux vacua [38–44], since the functions and equations in both black holes and flux

vacua frameworks are quite similar. In the black hole attractors one focuses on the black

hole potential [33], while in the flux vacua attractors one studies the scalar potential in N =

1 supergravity [38]. In both cases one investigates extreme points (called attractor points)

by evaluating the potentials, which are expressed in terms of the N = 1 superpotential. The

scalar potential is described in terms of the Kähler potential K and the superpotential W as

V = eK
(
KMNDMWDNW − 3|W|2

)
+

1

2
(Ref)âb̂D

âDb̂ ≡ VW + VD , (1.1)

where DM is the Kähler covariant derivative with respect to complex scalar fields φM , de-

fined as DMW ≡ (∂M +∂MK)W, and KMN = ∂M∂NK(φ, φ) is the Kähler metric. The φM

collectively denote all complex scalars in all chiral multiplets present in the N = 1 theory.

The second term on the right-hand side carries the D-terms Dâ which belong to vector mul-

tiplets. The attractor point is defined by the equation φM = φM
∗ satisfying ∂V/∂φM |∗ = 0.

This paper is structured as follows: In section 2 we write down the scalar potential and

its derivatives in four-dimensional N = 1 supergravity. We evaluate the derivatives of the

scalar potential, which are called attractor equations. In order to make our discussion clear,

we restrict the prepotential governing the superpotential to a simple form. In sections 3, 4, 5

and 6, we find flux vacua attractors in various examples. In section 3 we analyze a model

in which Ramond-Ramond fluxes as well as (non)geometric fluxes are introduced. In this

analysis two discriminants of the superpotential play central roles in the classification of su-

persymmetric vacua, where the discriminants are written in terms of flux charges. If the dis-

criminants are positive, we obtain a supersymmetric AdS vacuum whose cosmological con-

stant is governed by (the square root of) a discriminant of the superpotential. If the discrim-

inants are negative, we obtain a supersymmetric Minkowski vacuum. In section 4 we ana-

lyze a different model in which Ramond-Ramond flux charges are absent, whereas nongeo-

metric flux charges are present. There we again obtain a supersymmetric AdS vacuum. In

section 5 we study other models which carry only geometric flux charges, where we find nei-

ther supersymmetric nor non-supersymmetric solutions if the prepotential is expressed only

in terms of the intersection number, as in the case of Calabi-Yau compactification in the

large volume limit. In section 6 we introduce correction terms to the prepotential in order

to find supersymmetric vacua in the presence of geometric flux charges, but without non-

geometric and Ramond-Ramond flux charges. We can interpret each of the models in this

section as coming from heterotic string theory compactified on a torsionful manifold with a

single SU(3)-structure. Section 7 is devoted to the summary and discussions. To streamline

the arguments, brief derivations of the functions in section 2 are included in appendices.

2 Analysis of scalar potential

In this section we analyze the scalar potential (1.1). We start with type IIA string theory

compactified on generalized geometry with SU(3)×SU(3) structures. This compactification

– 3 –
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yields the superpotential W, the Kähler potential K, the dilaton ϕ and the D-terms DÂ

in four-dimensional spacetime. Their explicit forms are

W = − i

4ab

[
XǍ

(
eRRǍ − U ǏeǏǍ + ŨÎmǍ

Î
)
−FǍ

(
mǍ

RR + U ǏpǏ
Ǎ − ŨÎq

ÎǍ
)]

, (2.1a)

K = K+ + 4ϕ , (2.1b)

K+ = − log i
(
XǍFǍ −XǍF Ǎ

)
, (2.1c)

e−2ϕ =
1

2

[
Im
(
CZ Ǐ

)
Re (CGǏ) − Re

(
CZ Î

)
Im(CGÎ)

]
, (2.1d)

DÂ = e2ϕ
[
(ImN )−1

]ÂB̂
{
Re
(
CZ Î

) [
eÎB̂ + NB̂ĈpÎ

Ĉ
]
− Re(CGǏ)

[
mB̂

Ǐ + NB̂Ĉq
ǏĈ
]}

.

(2.1e)

Here we used notation and conventions in [7, 12, 15, 45]. We summarize derivations of the

above functions in the appendices.

Let us search an extreme point of the scalar potential given by ∂PV = 0 with respect

to holomorphic variables. The first derivatives are written as

∂PVW = eK
{
KMNDPDMWDNW + ∂PK

MNDMWDNW − 2WDPW
}
, (2.2a)

∂PVD =
1

2
∂P (Ref)âb̂D

âDb̂ +
1

2
(Ref)âb̂∂PD

âDb̂ +
1

2
(Ref)âb̂D

â∂PD
b̂ , (2.2b)

where we used ∂PW = 0 and a set of equations:

W∂PW = WDPW − ∂PK|W|2 , (2.3a)

DPDMW = ∂PDMW + ∂PKDMW , (2.3b)

DPDNW = KPNW . (2.3c)

The Kähler covariant derivative is defined in terms of the Kähler potential K = K+ + 4ϕ.

This does not inherit the property of the special Kähler geometry of local type.

We look for a solution which satisfies ∂PVW = 0 and ∂PVD = 0. This is realized when

the supersymmetry condition DPW = 0 is satisfied. The equation DPW = 0 is called the

attractor equation in supersymmetric attractor mechanism. The holomorphic scalar fields

are described by

tǎ =
X ǎ

X0
= bǎ + ivǎ , U Ǐ = ξǏ + i Im

(
CZ Ǐ

)
, ŨÎ = ξ̃Î + i Im(CGÎ) ,

(2.4a)

I = 0, 1, . . . , b− Ǐ = 0, 1, . . . , b̌− , Î = 1, . . . , b̂− , b̂− ≡ b− − b̌− . (2.4b)

Since Z0 is compensated by the four-dimensional dilaton ϕ via the combination CZ0 [15],

U0 = ξ0 + iIm(CZ0) is dynamical.

In order to extract significant property of vacua, it is much instructive to restrict the

prepotentials. Precisely speaking, we reduce the prepotential F on M+ and the number

– 4 –
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of degrees of freedom in the moduli space M−. Here we set the prepotential F [15, 45] in

the following form:

F ≡ Dabc
XaXbXc

X0
, Dabc = −1

6
Kabc . (2.5)

We should keep in mind that the expression (2.5) implies that all α′ corrections are ne-

glected. In Calabi-Yau compactification this setting is usual, while quite restricted in the

case of compactifications on generalized geometries. We will discuss this issue in sections 5

and 6. We also restrict another moduli space M−. For simplicity, we reduce the number

of moduli. We set Ǐ = {0}. This means that the remaining dynamical field is U0, and we

truncate out all of U ǐ and ŨÎ . From now on we abbreviate U0 to U . As far as we concern

this reduction, the constraints (B.13) are trivial.

2.1 Derivatives of superpotential

The superpotential (2.1a) is governed by the Ramond-Ramond flux charges and the

(non)geometric flux charges. Its explicit form is

W = WRR + UWQ , (2.6a)

WRR ≡ − i

4ab

(
XǍeRRǍ −FǍm

Ǎ
RR

)
, WQ ≡ i

4ab

(
XǍe0Ǎ + FǍ p0

Ǎ
)
. (2.6b)

We refer to WRR as the Ramond-Ramond flux superpotential, and to WRR as the

(non)geometric flux superpotential. The Kähler covariant derivatives acting on the su-

perpotential are

DǎW = DǎWRR + UDǎWQ , (2.7a)

DUW =
i

ImU

(
WRR + ReUWQ

)
. (2.7b)

We study the second Kähler covariant derivatives of the superpotential DMDNW =

∂MDNW + ∂MKDNW. The explicit forms are

Db̌DǎW = Db̌DǎWRR + UDb̌DǎWQ = iCǎb̌č(K+)čď
(
D

ď
WRR + UD

ď
WQ

)
, (2.8a)

DUDǎW = DǎWQ +
i

ImU
DǎW , (2.8b)

DUDUW =
i

2ImU

(
3DUW + WQ

)
. (2.8c)

Since ta is independent of U , we can use a formula DaDb

(
e

K+

2 W
)

=

iCabc(K+)cdDd

(
e

K+

2 W
)
. As far as we concern the system with the prepotential (2.5), the

imaginary part of U does not vanish, otherwise the Kähler metric KUU and the curvature

tensor RU
UUU become singular.

Now we are ready to evaluate the extreme point of VW . Due to the equations (2.7),

we obtain a set of differential equations and an algebraic equation at the extreme point

(tǎ, U) = (tǎ∗, U∗):

DǎW
∣∣
∗

= 0 → DǎWRR
∣∣
∗

= −U∗DǎWQ
∣∣
∗
, (2.9a)

DUW
∣∣
∗

= 0 → WRR
∗ = −ReU∗WQ

∗ . (2.9b)

– 5 –
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If both DǎWRR and DǎWQ vanish to satisfy (2.9a) while WRR and WQ do not vanish, we

obtain flux vacua attractor equations. These are exactly the same equations in the black

hole attractors in type IIA theory [32–34]. On the other hand, if we can take DǎWRR|∗ 6= 0

with DǎW|∗ = 0, we can employ the non-supersymmetric black hole analyses in finding

supersymmetric flux vacua. The discussions of a classification of (non)supersymmetric

vacua can be seen in [43].

2.2 Derivatives of D-term

Investigation of the D-term (2.1e) is interesting, because its non-trivial value breaks super-

symmetry. It is known that

fâb̂ = −iN âb̂ = iKâb̂čt
č , (Ref)âb̂ = −(ImN )âb̂ = −Kâb̂ , (ReN )âb̂ = −Kâb̂čb

č . (2.10)

Here let us write a concrete form

Dâ = − 2

ImU
[(ImN )−1]âb̂

(
mb̂

0 + Nb̂ĉ q
0ĉ
)
. (2.11)

Note that the indices Â are reduced to â, since the graviphoton A0
µ is always truncated

out. The intersection number Kâb̂č =
∫
M
ωâ∧ωb̂∧ωč is a constant. It is useful to introduce

an inverse Kâb̂ which satisfies a relation Kâb̂Kb̂ĉ = δâ
ĉ . The D-term and the potential can

be rewritten as

µâ ≡ −(ImN )âb̂D
b̂ =

2

ImU

(
mâ

0 −Kâb̂čt
č q0b̂

)
, VD = −1

2
Kâb̂µâµb̂ . (2.12)

The first derivative ∂PVD is written as ∂PVD = −1
2∂PKâb̂µâµb̂− 1

2Kâb̂∂Pµâµb̂− 1
2Kâb̂µâ∂Pµb̂.

The derivatives depend only on the complex variables tǎ = bǎ + ivǎ:

∂čKâb̂ = Kâb̂ď

∂vď

∂tč
= −iKâb̂č , ∂čNâb̂ = −Kâb̂ď

∂tď

∂tč
= 0, ∂čN âb̂ = −Kâb̂č . (2.13)

We also study the first derivatives of µâ:

∂b̌µâ = 0 , ∂b̌µâ = − 2

ImU
Kâĉb̌q

0ĉ , ∂Uµâ =
i

2ImU
µâ , ∂Uµâ =

i

2ImU
µâ . (2.14)

Then we obtain

∂čVD = − i

2
KâêKčd̂ê µâ

(
Kb̂d̂µb̂ +

2i

ImU
q0d̂

)
, ∂UVD = − i

4ImU
Kâb̂ µâµb̂ . (2.15)

Since there are no contributions of mâ
0 and q0â to the scalar potential VW , we can evaluate

the extreme point of VD independently. If we consider the condition ∂PVD|∗ = 0, we

find that

µâ

∣∣
∗

= 0 (2.16)

is the solution. This implies that the D-term contribution does not break supersymmetry

and the scalar potential VD vanishes at the extreme point. Then it is enough to focus on

the scalar potential VW in order to analyze whether supersymmetry of the effective theory

is broken or not.

– 6 –
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2.3 Search of (non)supersymmetric flux attractor vacua

So far we specified the Kähler potential, the superpotential, the D-term and their deriva-

tives. In next sections we study various simple examples which show intrinsic phenomena

in supersymmetric flux vacua. First, we consider a setup which contains not only Ramond-

Ramond fluxes but also (non)geometric fluxes. In this setup we obtain a simple but power-

ful rule to find supersymmetric vacua. Second, we study other cases in which the Ramond-

Ramond flux charges are absent. More precisely we consider the following three cases: (i)

No Ramond-Ramond flux charges in the presence of the nongeometric flux charges: (ii)

No Ramond-Ramond flux charges in the absence of the nongeometric flux charges without

any corrections in the prepotential (2.5): (iii) No Ramond-Ramond flux charges in the

absence of the nongeometric flux charges with corrections in the prepotential. Indeed a

generalized geometry with neither the Ramond-Ramond fluxes nor the nongeometric fluxes

corresponds to an SU(3)-structure manifold in string flux compactification. We do not con-

sider other situations that all the (non)geometric flux charges vanish while there exist non-

zero Ramond-Ramond flux charges. These configurations are forbidden [25] because the

Ramond-Ramond fluxes induce the non-zero valued NS-NS flux and some torsion classes.

3 Example 1: a model with Ramond-Ramond flux charges

3.1 Strategy

In section 2 we discussed the attractor equations DPW = 0. Here we set a = b eiθ and

|a|2 = |b|2 = 1
2 as in (D.1) via the O6 orientifold projection. An arbitrary parameter θ is

absorbed in the phase of a (or b) to set 2ab = −i. We rescale all the flux charges by integer

2 without loss of generality. The scalar potential on the extreme point is given by

DǎW
∣∣
∗

= 0 , DUW
∣∣
∗

= 0 , (3.1a)

V∗ = eK
(
KMNDMWDNW − 3|W|2

)
∗
− 1

2
Kâb̂µâµb̂

∣∣∣
∗

= −3 eK |W∗|2 . (3.1b)

This gives a non-positive cosmological constant. The four-dimensional spacetime becomes

a Minkowski space (if W∗ = 0) or an AdS space (if W∗ 6= 0). Here let us consider a model

governed by a single modulus tǎ ≡ t. Various functions are simplified:

K+ = − log
(
− iD(t− t)3

)
, Cttt =

6i

(t− t)3
, (3.2)

where we set Dǎb̌č = D. The superpotentials WRR and WQ (2.6) are explicitly given by

WRR = XǍeRRǍ −FǍm
Ǎ
RR = eRR0 + eRRt− 3mRRt

2 +m0
RRt

3 , (3.3a)

WQ = −
(
XǍe0Ǎ + FǍp0

Ǎ
)

= −e00 − e0t− 3p0t
2 + p0

0t3 . (3.3b)

For simplicity, we assume that m0
RR and p0

0 are positive definite and D = 1. To

restore explicit contributions of D, one replaces the charges (mRR,m
0
RR, p0, p0

0) to

(DmRR,Dm
0
RR,Dp0,Dp0

0).

– 7 –
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Following the discussion in (2.9), the supersymmetry condition is described by one

differential and one algebraic equations with respect to WRR and WQ:

DtW
∣∣
∗

= 0 → DtWRR
∣∣
∗

= −U∗DtWQ
∣∣
∗
, (3.4a)

DUW
∣∣
∗

= 0 → WRR
∗ = −ReU∗WQ

∗ . (3.4b)

It is useful to consider discriminants1 of the Ramond-Ramond flux superpotential WRR

and of its derivative ∂tWRR:

∆(WRR) ≡ ∆RR = −27
(
m0

RReRR0

)2 − 54m0
RReRR0mRReRR + 9

(
mRReRR

)2

+108(mRR)3eRR0 − 4m0
RR(eRR)3 , (3.5a)

∆(∂tWRR) ≡ λRR = 12
(
3(mRR)2 −m0

RReRR

)
. (3.5b)

It is also useful to discuss discriminants of the (non)geometric flux superpotential WQ and

of its derivative ∂tWQ:

∆(WQ) ≡ ∆Q = −27
(
p0

0e00
)2 − 54p0

0e00p0e0 + 9
(
p0e0

)2 − 108(p0)
3e00 + 4p0

0(e0)
3 ,

(3.6a)

∆(∂tWQ) ≡ λQ = 12
(
3(p0)

2 + p0
0e0
)
. (3.6b)

Our strategy is as follows: First we investigate zeros of the Ramond-Ramond flux

superpotential WRR and those of its covariant derivativeDtWRR by using the discriminants

∆RR and λRR. Second we analyze the (non)geometric flux superpotential WQ in terms of

the discriminants ∆Q and λQ in a parallel way. Third we evaluate possible supersymmetric

vacua following the equations (3.4).

3.2 Ramond-Ramond flux superpotential

3.2.1 Solutions of DtWRR = 0

We formally describe a solution of DtWRR = 0:

t∗ ≡ t1∗ + it2∗ =
6(3m0

RReRR0 +mRReRR)

λRR
± 2i

√
3∆RR

λRR
. (3.7a)

The superpotential at this point is given by

WRR
∗ = −24∆RR

(λRR)3

(
36(mRR)3 + 36(m0

RR)2eRR0 − 3mRRλ
RR − 4i sign(λRR)m0

RR

√
3∆RR

)
.

(3.7b)

These expressions are quite sensitive to signs of the discriminants ∆RR and λRR.

If ∆RR is positive, λRR is always positive. Under this condition we find that the

expression t∗ (3.7a) becomes a consistent solution and that the superpotential does not

1The author would like to thank Tohru Eguchi for his introducing an essential idea of the usage of

discriminants.
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vanish:

t∗ =
6(3m0

RReRR0 +mRReRR)

λRR
− 2i

√
3∆RR

λRR
, (3.8a)

WRR
∗ = −24∆RR

(λRR)3

(
36(mRR)3 + 36(m0

RR)2eRR0 − 3mRRλ
RR − 4im0

RR

√
3∆RR

)
. (3.8b)

Here we chose the minus sign in front of t2∗ in order that the Kähler potential K+ =

− log[−i(t∗ − t∗)
3] is well-defined.

If ∆RR vanishes, λRR is non-negative. However, if λRR also vanishes, t∗ and WRR
∗

become singular. This is forbidden. In the case of positive λRR, t∗ is real and WRR
∗

vanishes. Although this point is harmless as far as the equation DtWRR = 0 is concerned,

it should not be chosen as an admissible supersymmetric solution, because the metric and

the curvature tensor become singular:

Ktt = − 3

(t− t)2
, Rt

ttt =
2

(t− t)2
. (3.9)

We conclude that if the discriminant ∆RR vanishes, there are no physical solutions.

If ∆RR is negative, t2∗ in (3.7a) is ill-defined. This implies that there are no consistent

solutions of the equation DtWRR|∗ = 0, even though λRR is not restricted.

3.2.2 Solutions of WRR = 0

Here we look for a consistent solution which satisfies the equation WRR
∗ = 0. In this

consideration it is also useful to classify physical solutions in terms of the discriminant

∆RR (3.5).

If ∆RR is positive, there are three distinct real roots (e1, e2, e3) of the equation WRR =

0. The superpotential and its Kähler covariant derivative are rewritten as

WRR = m0
RR(t− e1)(t− e2)(t− e3) , e1, e2, e3 ∈ R , (3.10a)

DtWRR = −WRR

t− t

(
t− e1
t− e1

+
t− e2
t− e2

+
t− e3
t− e3

)
. (3.10b)

The three real roots ei are related to the Ramond-Ramond flux charges:

3mRR = m0
RR

(
e1 + e2 + e3

)
, eRR = m0

RR

(
e1e2 + e2e3 + e3e1

)
, eRR0 = −m0

RRe1e2e3 .

(3.10c)

We find a non-zero value of the covariant derivative at the points t∗ = ei. For instance,

the value at t∗ = e1 is

DtWRR
∣∣
t∗=e1

= −3m0
RR(e1 − e2)(e1 − e3) 6= 0 . (3.10d)

This value itself is finite. However, the Kähler metric and the curvature (3.9) become

singular. Then we cannot choose this solution as an attractor point. The other two zeros

e2 and e3 give the same situations. Thus there are no finite solutions of WRR = 0 if ∆RR

is positive.
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If ∆RR vanishes, λRR is non-negative. When λRR is positive, the equation WRR = 0 has

two coincident real roots e1 and a distinct real root e2. When λRR vanishes, the three roots

coincide with each other. In both cases the superpotential and its covariant derivative are

WRR = m0
RR(t− e1)

2(t− e2) , e1, e2 ∈ R , (3.11a)

DtWRR = −WRR

t− t

(
2(t− e1)

t− e1
+
t− e2
t− e2

)
. (3.11b)

The relations among the flux charges and the roots are

3mRR = m0
RR

(
2e1 + e2

)
, eRR = m0

RR

(
(e1)

2 + 2e1e2
)
, eRR0 = −m0

RR(e1)
2e2 .

(3.11c)

We find that the covariant derivatives of the superpotential vanish at the points t∗ = ei:

DtWRR
∣∣
t∗=e1

= 0 , DtWRR
∣∣
t∗=e2

= 0 . (3.11d)

These values are finite. However, the Kähler metric and the curvature (3.9) become

singular in the same reason as in ∆RR > 0. They are inadmissible to physical solutions.

If ∆RR is negative, the equation WRR = 0 has one real root e1 and a pair of complex

roots (α,α). Then the superpotential and its covariant derivative are rewritten as

WRR = m0
RR(t− e1)(t− α)(t− α) , e1 ∈ R , α ∈ C , (3.12a)

DtWRR = −WRR

t− t

(
t− e1
t− e1

+
t− α

t− α
+
t− α

t− α

)
. (3.12b)

The three roots are related to the flux charges:

3mRR = m0
RR

(
e1 + α+ α

)
, eRR = m0

RR

(
e1(α+ α) + |α|2

)
, eRR0 = −m0

RRe1|α|2 .
(3.13)

The solutions are explicitly given by

e1 = − 1

m0
RR

(
− 3mRR + 2m0

RR(Reα)
)
, (3.14a)

(Reα) =
λRR + (FRR)2/3 + 12mRR(FRR)1/3

12m0
RR

(FRR)1/3
(if FRR > 0) , (3.14b)

or(Reα) = − 1

24m0
RR

(FRR)1/3

((
λRR + (FRR)2/3

)
±
√

3i
(
λRR − (FRR)2/3

)
− 24mRR(FRR)1/3

)

=
λRR + (GRR)2/3 + 12mRR(GRR)1/3

12m0
RR

(GRR)1/3
(if FRR = −GRR < 0) , (3.14c)

(Imα)2 =
1

m0
RR

(
eRR − 6mRR(Reα) + 3m0

RR(Reα)2
)
, (3.14d)

FRR = 108(m0
RR)2eRR0 + 12m0

RR

√
−3∆RR + 108(mRR)3 − 9λRRmRR . (3.14e)

Note that FRR cannot vanish otherwise t∗ = α goes to infinity. In order that the above

expressions provide a solution of WRR
∗ = 0 and DtWRR|∗ 6= 0, the square of the imaginary

part of α has to be positive definite:

3m0
RR(Reα)2 − 6mRR(Reα) + eRR > 0 . (3.15)
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The discriminant of the function of (Reα) in the left-hand side is nothing but λRR. If this

is non-negative, there exist the following points where (Imα) vanishes:

(Reα) =
1

6m0
RR

(
6mRR ±

√
λRR

)
. (3.16)

However, this is inconsistent with ∆RR < 0 that gives one real and a pair of complex

zeros. Then we find that λRR < 0 is necessary to obtain a solution of WRR
∗ = 0 with

DtWRR|∗ 6= 0. Since the root t∗ = e1 gives singular curvature, the consistent solution is

only given by t∗ = α.

3.3 (Non)geometric flux superpotential

In this subsection we investigate features of the (non)geometric flux superpotential. Since

the function WQ is similar to WRR, we can evaluate this sector in a parallel way as in

the previous subsection. First we look for a solution of DtWQ = 0. Next we analyze a

condition WQ = 0 by using the discriminants ∆Q and λQ in (3.6).

3.3.1 Solutions of DtWQ = 0

Let us investigate consistent conditions to satisfy the equation DtWQ = 0. We formally

describe a solution of DtWQ = 0 as follows:

t∗ ≡ t1∗ + it2∗ = −6(3p0
0e00 + p0e0)

λQ
± 2i

√
3∆Q

λQ
. (3.17a)

The superpotential at this point is given by

WQ
∗ = −24∆Q

(λQ)3

(
36(p0)

3 − 36(p0
0)2e00 − 3p0λ

Q − 4i sign(λQ)p0
0
√

3∆Q
)
. (3.17b)

Consistency of the above formal expression is evaluated in terms of the discriminants ∆Q

and λQ as in the previous subsection.

If ∆Q is positive, λQ is always positive. Under this condition we find that t∗ (3.17a)

becomes a consistent solution with non-vanishing superpotential:

t∗ = −6(3p0
0e00 + p0e0)

λQ
− 2i

√
3∆Q

λQ
, (3.18a)

WQ
∗ = −24∆Q

(λQ)3

(
36(p0)

3 − 36(p0
0)2e00 − 3p0λ

Q − 4i p0
0
√

3∆Q
)
. (3.18b)

Here we have already chose the negative sign in front of t2∗ to realize a well-defined Kähler

potential. We find the Kähler metric is non-degenerated and the curvature is finite.

If ∆Q vanishes, λQ is non-negative. However if λQ is zero, t1∗ in (3.17a) and WQ
∗ (3.17b)

are ill-defined. Then only the positive λQ is allowed. In this case, t∗ is reduced to a real

value and WQ
∗ vanishes. It cannot be chosen as a physical solution to realize a well-defined

supersymmetric solution, because the curvature tensor (3.9) goes to infinity. We conclude

that there are no admissible solutions of DtWQ = 0 if ∆Q vanishes.

If ∆Q is negative, the expression t2∗ in (3.17a) becomes ill-defined. This implies that

there are no consistent solutions of the equation DtWQ|∗ = 0, even though the discriminant

λQ is not restricted.
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3.3.2 Solutions of WQ = 0

Here we look for a consistent solution of the equation WQ
∗ = 0. If ∆Q is positive or

zero, there are no consistent solutions to realize supersymmetric vacua as in the previous

subsection. Then we focus on the case of the negative valued ∆Q. In this case, the equation

WQ = 0 has one real root e1 and a pair of complex roots (α,α). The superpotential and

its covariant derivative are written as

WQ = p0
0(t− e1)(t− α)(t− α) , e1 ∈ R , α ∈ C , (3.19a)

DtWQ = −WQ

t− t

(
t− e1
t− e1

+
t− α

t− α
+
t− α

t− α

)
. (3.19b)

The three roots are related to the flux charges:

3p0 = p0
0
(
e1 + α+ α

)
, e0 = −p0

0
(
e1(α+ α) + |α|2

)
, e00 = p0

0e1|α|2 . (3.20)

The solutions are given by

e1 = − 1

p0
0

(
− 3p0 + 2p0

0(Reα)
)
, (3.21a)

(Reα) =
λQ + (FQ)2/3 + 12p0(FQ)1/3

12p0
0(FQ)1/3

(if FQ > 0) , (3.21b)

or(Reα) = − 1

24p0
0(FQ)1/3

((
λQ + (FQ)2/3

)
±

√
3i
(
λQ − (FQ)2/3

)
− 24p0(FQ)1/3

)

=
λQ + (GQ)2/3 + 12p0(GQ)1/3

12p0
0(GQ)1/3

(if FQ = −GQ < 0) , (3.21c)

(Imα)2 =
1

p0
0

(
− e0 − 6p0(Reα) + 3p0

0(Reα)2
)
, (3.21d)

FQ = −108(p0
0)2e00 + 12p0

0
√

−3∆Q + 108(p0)
3 − 9λQp0 . (3.21e)

Note that FQ is non-zero otherwise t∗ = α goes to infinity. Since we have already assumed

p0
0 > 0, the following inequality should be imposed:

3p0
0(Reα)2 − 6p0(Reα) − e0 > 0 . (3.22)

The discriminant of the function of (Reα) in the left-hand side is nothing but λQ. If this

is non-negative, there exist the following points where (Imα) vanishes:

(Reα) =
1

6p0
0

(
6p0 ±

√
λQ
)
. (3.23)

However, this is inconsistent with the condition ∆Q < 0 which gives one real and a pair of

complex zeros. Then λQ < 0 is necessary to obtain a solution of WQ
∗ = 0 with DtWQ|∗ 6= 0.

Since t∗ = e1 gives ill-defined curvature, the consistent solution is only given by t∗ = α.
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3.4 Supersymmetric vacua

We have already studied various situations when the superpotentials WRR and WQ and/or

their covariant derivatives DtWRR and DtWQ have zeros. The signs of the discriminants

of the superpotentials characterize admissible solutions. Here we classify supersymmetric

flux attractor vacua which satisfy (3.4).

Consider the case that both the two discriminants ∆RR and ∆Q are positive. There

exists a solution which satisfies DtWRR = 0, DtWQ = 0, WRR 6= 0 and WQ 6= 0. Here

obtain the following equations from (3.8) and (3.18):

DtW
∣∣
∗

= DtWRR
∣∣
∗
+ U∗DtWQ

∣∣
∗

= 0 , DtWRR
∣∣
∗

= DtWQ
∣∣
∗

= 0 , (3.24a)

DUW
∣∣
∗

=
1

ImU

(
WRR

∗ + ReU∗WQ
∗

)
= 0 , (3.24b)

W∗ = WRR
∗ + U∗WQ

∗ = iImU∗WQ
∗ , (3.24c)

tRR
∗ =

6(3m0
RReRR0 +mRReRR)

λRR
− 2i

√
3∆RR

λRR
, (3.24d)

tQ∗ = −6(3p0
0e00 + p0e0)

λQ
− 2i

√
3∆Q

λQ
, (3.24e)

WRR
∗ = −24∆RR

(λRR)3

(
36(mRR)3 + 36(m0

RR)2eRR0 − 3mRRλ
RR − 4im0

RR

√
3∆RR

)
,

(3.24f)

WQ
∗ = −24∆Q

(λQ)3

(
36(p0)

3 − 36(p0
0)2e00 − 3p0λ

Q − 4i p0
0
√

3∆Q
)
. (3.24g)

Since the two solutions tRR
∗ and tQ∗ have to coincide with each other, we find a non-trivial

relation:

3m0
RReRR0 +mRReRR

λRR
= −3p0

0e00 + p0e0
λQ

,

√
∆RR

λRR
=

√
∆Q

λQ
. (3.25)

We can fix only the real part of the variable U by

ReU∗ = −WRR
∗

WQ
∗

, (3.26)

whilst the imaginary part remains unfixed. This indicates that the dilaton (2.1d) is not

fixed. The value of the superpotential W∗ also contains ImU . However, this does not

explicitly appear in the cosmological constant Λ = −3 eK |W∗|2:

−3 eK |W∗|2 =
3

2(tQ2 )3
1

[Re(CG0)]2
|WQ

∗ |2 = − 4

[Re(CG0)]2

√
∆Q

3
. (3.27)

The value Re(CG0), which should be non-zero to realize a well-defined Kähler poten-

tial (2.1b), is not fixed by the attractor equations, either. However this should be very

large under the supergravity approximation: The exponent of the expectation value of the

dilaton gives the sting coupling constant. This should be very small. This restriction im-

poses that the compensator C (C.11b) is very large. Then the cosmological constant (3.27)

becomes very small. This solution realizes a supersymmetric AdS vacuum. The stability of
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the system has already been guaranteed by [46] in a generic form, where all mass eigenval-

ues satisfy the Breitenlohner-Freedman criterion [47]. This result differs from that of [44]

where only the Minkowski vacua is realized. This difference comes from the introduction

of the Ramond-Ramond flux charges. We will come back to this issue in later sections.

Next, let us consider the case that both of ∆RR and ∆Q are negative. There ex-

ists another attractor point which satisfies WRR = 0, WQ = 0, DtWRR 6= 0 and

DtWQ 6= 0. We can see a non-trivial relation between the Ramond-Ramond flux charges

and the (non)geometric flux charges via the equations WRR = 0 and WQ = 0. The

former gives a solution t∗ = αRR(eRR0, eRR,mRR,m
0
RR) in (3.14), while the latter yields

t∗ = αQ(e00, e0, p0, p0
o) in (3.21). These two solutions have to coincide with each other:

αRR = αQ , (3.28a)

ReαRR =
λRR + (FRR)2/3 + 12mRR(FRR)1/3

12m0
RR(FRR)1/3

, (3.28b)

ReαQ =
λQ + (FQ)2/3 + 12p0(FQ)2/3

12p0
0(FQ)1/3

, (3.28c)

(ImαRR)2 =
1

m0
RR

(
eRR − 6mRR(ReαRR) + 3m0

RR(ReαRR)
)
, (3.28d)

(ImαQ)2 =
1

p0
0

(
− e0 − 6p0(ReαQ) + 3p0

0(ReαQ)2
)
, (3.28e)

eRR
1 = − 1

m0
RR

(
− 3mRR + 2m0

RR(ReαRR)
)
, (3.28f)

eQ1 = − 1

p0
0

(
− 3p0 + 2p0

0(ReαQ)
)
, (3.28g)

FRR = 108(m0
RR)2eRR0 + 12m0

RR

√
−3∆RR + 108(mRR)3 − 9λRRmRR , (3.28h)

FQ = −108(p0
0)2e00 + 12p0

0
√

−3∆Q + 108(p0)
3 − 9λQp0 . (3.28i)

We can stabilize the variable U in the following way:

U∗ = −DtWRR|t∗=α

DtWQ|t∗=α
, (3.29a)

DtWRR
∣∣
t∗=α

= −2im0
RR(ImαRR)

[
3

(
mRR

m0
RR

−
(
ReαRR

))
− i (ImαRR)

]
, (3.29b)

DtWQ
∣∣
t∗=α

= −2i p0
0(ImαQ)

[
3

(
p0

p0
0
− (ReαQ)

)
− i (ImαQ)

]
, (3.29c)

where we used ImU 6= 0 because of finiteness of the curvature tensor RU
UUU . The van-

ishing superpotential sets the cosmological constant to be zero. Then a supersymmetric

Minkowski vacuum is realized. This configuration is interpreted that the internal space M

is reduced to a parallelizable twisted torus [12].

We discuss other situations: (i) There are no attractor solutions to satisfy the equa-

tions (3.4) if the relative signs of the two discriminants are different; i.e., ∆RR · ∆Q < 0.

(ii) Apart from the attractor solutions where the moduli are stabilized, there exist non-

attractor solutions which satisfy the supersymmetry condition (3.4). Due to the lack of

the number of equations, however, the moduli t and U are not fixed at all. These solutions

do not provide vanishing superpotentials. Then the vacua are realized as AdS spaces.
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4 Example 2: a model without Ramond-Ramond flux charges

In this section we study a model without the Ramond-Ramond flux charges eRRǍ = 0 =

mǍ
RR. The total superpotential W and its covariant derivatives are reduced to

W = UWQ , (4.1a)

WQ = −e00 − e0ǎt
ǎ − 3p0

čDǎb̌č t
ǎtb̌ + p0

0Dǎb̌č t
ǎtb̌tč , (4.1b)

DǎW = UDǎWQ , DUW = i
ReU

ImU
WQ . (4.1c)

We imposed ImU 6= 0. In supersymmetric solutions, the following equations have to be

satisfied:

DǎW = 0 ↔ DǎWQ = 0 , (4.2a)

DUW = 0 ↔ ReUWQ = 0 . (4.2b)

In the single modulus model as in section 3.3, we obtain a solution (3.18) consistent

with (4.2):

∆Q = −27(p0
0e00)

2 − 54p0
0e00p0e0 + 9(p0e0)

2 − 108(p0)
3e00 + 4p0

0(e0)
3 > 0 , (4.3a)

λQ = 12
(
3(p0)

2 + p0
0e0
)
> 0 , (4.3b)

t∗ = −6(3p0
0e00 + p0e0)

λQ
− 2i

√
3∆Q

λQ
, (4.3c)

WQ
∗ = −24∆Q

(λQ)3

(
36(p0)

3 − 36(p0
0)2e00 − 3p0λ

Q − 4i p0
0
√

3∆Q
)
, (4.3d)

ReU∗ = 0 . (4.3e)

Here we chose that t2∗ is negative in order that the Kähler potential is well-defined. The

scalar potential at this point is described as

V∗ = − 4

[Re(CG0)]2

√
∆Q

3
. (4.4)

In this model the attractor equations (4.2) can fix only the real part of the variable U , while

its imaginary part is kept unfixed. Due to this, the value Re(CG0) is unfixed. However,

this should be very large under the supergravity approximation. The only one condition

is that Re(CG0) does not vanish in order to realize a well-defined Kähler potential (2.1b).

This result again differs from that of [44]. There would be at least two possibilities: (i) The

prepotential F in (2.5) would not be an appropriate form to find a Minkowski vacuum. (ii)

The attractor equations [44] based on the work [41] might not be the most generic equations

to find all flux vacua. It would be interesting to fill gaps between our result and that of [44].

5 Example 3: models on SU(3)-structure manifold without Ramond-

Ramond flux charges

Here let us analyze a model compactified without the Ramond-Ramond flux charges and

nongeometric flux charges. In this model we set

eRRǍ = 0 , mǍ
RR = 0 , p0

Ǎ = 0 , q0Ǎ = 0 . (5.1)
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The total superpotential W and its covariant derivatives are reduced to

W = UWQ , (5.2a)

WQ = −e00 − e0ǎt
ǎ , (5.2b)

DǎW = UDǎWQ , DUW = i
ReU

ImU
WQ , (5.2c)

Db̌DǎW = i U Cǎb̌č(K+)čďD
ď
WQ , (5.2d)

DUDǎW = i
ReU

ImU
DǎWQ , DUDUW = − U + 2U

2(ImU)2
WQ . (5.2e)

Let us first consider the case that DPW = 0 is satisfied. Next we try to find a

possibility that a consistent non-supersymmetric solution which satisfies DPW 6= 0

with ∂PV = 0. Actually we find later that there are neither supersymmetric nor

non-supersymmetric solutions.

5.1 Supersymmetric vacua

In a supersymmetric solution, the equations DǎW = 0 and DUW = 0 are satisfied. We

again impose ImU 6= 0 to find a solution with finite curvature. Actually this configuration is

analogous to the case in heterotic string theory compactifications in the presence ofH-flux.2

For simplicity, let us first consider a single modulus model tǎ ≡ t. In this case the

covariant derivative is reduced to

DtWQ =
1

t− t

(
e0(2t+ t) + 3e00

)
. (5.3)

Then we find

2t+ t = −3e00
e0

, (5.4)

where the right-hand side is a real value. This implies the solution t should be real, while

this is inadmissible because the curvature (3.9) becomes singular at that point. Thus we

find there are no consistent supersymmetric solutions which satisfy DtWQ = 0. In the

same way, we also find that there are no consistent solutions of WQ = 0 because WQ =

−(e00 +e0t1)− ie0t2 can be zero if and only if t2 = 0, which gives rise to singular curvature.

Then we conclude that there are no supersymmetric solutions in the single modulus model.

Next we study so-called the stu-model given by the three local variables:

F =
XsXtXu

X0
, Xs = X0s , Xt = X0t , Xu = X0u . (5.5)

We set X0 = 1. The superpotential WQ, the Kähler potential K+, and other functions are
described as

WQ = −e00 − e0ss− e0tt− e0uu , (5.6a)

K+ = − log
(
− i(s− s)(t− t)(u− u)

)
, (5.6b)

2Precisely speaking, the condition dH 6= 0 is necessary to see a supersymmetric flux vacua in heterotic

theory [48].
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∂sK+ = − 1

s− s
, ∂tK+ = − 1

t− t
, ∂uK+ = − 1

u− u
,

(5.6c)

(K+)ǎb̌ = −diag.
(
(s− s)2, (t− t)2, (u− u)2

)
, (5.6d)

Cstu =
i

(s− s)(t− t)(u − u)
, (5.6e)

DsW =
U

s− s

(
e00 + e0ss+ e0tt+ e0uu

)
, DtW =

U

t− t

(
e00 + e0ss+ e0tt+ e0uu

)
,

(5.6f)

DuW =
U

u− u

(
e00 + e0ss+ e0tt+ e0uu

)
, (5.6g)

DsDtW =
u− u

(s− s)(t− t)
UDuW

Q
, DtDuW =

s− s

(t− t)(u − u)
UDsW

Q
, (5.6h)

DuDsW =
t− t

(u − u)(s− s)
DtW

Q
. (5.6i)

Expanding s = s1 + is2, t = t1 + it2 and u = u1 + iu2, we rewrite the supersymmetry

conditions:

0 = DsWQ →





0 =
1

2s2

(
− e0ss2 + e0tt2 + e0uu2

)

0 = − 1

2s2

(
e00 + e0ss1 + e0tt1 + e0uu1

) (5.7a)

0 = DtWQ →





0 =
1

2t2

(
e0ss2 − e0tt2 + e0uu2

)

0 = − 1

2t2

(
e00 + e0ss1 + e0tt1 + e0uu1

) (5.7b)

0 = DuWQ →





0 =
1

2u2

(
e0ss2 + e0tt2 − e0uu2

)

0 = − 1

2u2

(
e00 + e0ss1 + e0tt1 + e0uu1

) (5.7c)

The solution is given by

−e0ss1 = e00 + e0tt1 + e0uu1 , t1, u1 : unfixed , e0ss2 = e0tt2 = e0uu2 = 0 . (5.8)

In order to obtain the finite curvature, we should impose s2 6= 0, t2 6= 0 and u2 6= 0. This

implies e0s = e0t = e0u = 0 and then e00 = 0. This solution is interpreted as a Calabi-Yau

three-fold in the absence of fluxes. In such a configuration the superpotential WQ becomes

trivial. Thus we conclude that there are no non-trivial solutions to realize supersymmetric

flux vacua in the stu-model.

Even though we increase the number of moduli fields tǎ, we cannot find any consistent

solutions to realize supersymmetric flux vacua with the finite curvature as far as we restrict

the prepotential in the form as (2.5). Then we have to modify the form (2.5). This will be

discussed in the next section.

5.2 Non-supersymmetric vacua

Here we search a non-supersymmetric solution. In this case we have to solve the differential

equation ∂PVW = 0 itself.
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Let us again consider the single modulus model. In this case the functions have already

been given in (3.2). The first derivatives of the scalar potential ∂PVW (2.2a) are

e−K∂tVW =
2e0|U |2

3

(
e0(t+ 2t) + 3e00

)
+

2(ImU)2

t− t

(
e00 + e0t

)(
e0(2t+ t) + 3e00

)
,

(5.9a)

e−K∂UVW = −ReU

(
1 + i

ReU

ImU

)(
−1

3

∣∣e0(2t+ t) + 3e00
∣∣2 +

∣∣e00 + e0t
∣∣2
)
. (5.9b)

These two complex equations give four real equations whose solutions are

ReU = 0 , ImU, t1 : unfixed , t2 = ±3(e00 + e0t1)

e0

√
−1

5
. (5.10)

This is inconsistent with t2 ∈ R. Then we conclude that there are no consistent solu-

tions which satisfy ∂PVW = 0 in the search of non-supersymmetric vacua in the single

modulus model.

Next we consider the stu-model with functions (5.6). The derivatives of the scalar

potential are

e−K∂sVW = −2|U |2
s− s

(
e00 + e0ss+ e0tt+ e0uu

)(
e00 + e0ss+ e0tt+ e0uu

)

+
2|U |2
s− s

(
e00 + e0ss+ e0tt+ e0uu

)(
e00 + e0ss+ e0tt+ e0uu

)

−(U − U)2

2(s− s)

(
e00 + e0ss+ e0tt+ e0uu

)(
e00 + e0ss+ e0tt+ e0uu

)
, (5.11a)

e−K∂tVW = −2|U |2
t− t

(
e00 + e0ss+ e0tt+ e0uu

)(
e00 + e0ss+ e0tt+ e0uu

)

+
2|U |2
t− t

(
e00 + e0ss+ e0tt+ e0uu

)(
e00 + e0ss+ e0tt+ e0uu

)

−(U − U)2

2(t− t)

(
e00 + e0ss+ e0tt+ e0uu

)(
e00 + e0ss+ e0tt+ e0uu

)
, (5.11b)

e−K∂uVW = − 2|U |2
u− u

(
e00 + e0ss+ e0tt+ e0uu

)(
e00 + e0ss+ e0tt+ e0uu

)

+
2|U |2
u− u

(
e00 + e0ss+ e0tt+ e0uu

)(
e00 + e0ss+ e0tt+ e0uu

)

−(U − U)2

2(u− u)

(
e00 + e0ss+ e0tt+ e0uu

)(
e00 + e0ss+ e0tt+ e0uu

)
, (5.11c)

e−K∂UVW = −U(U + U)

U − U

(
e00 + e0ss+ e0tt+ e0uu

)(
e00 + e0ss+ e0tt+ e0uu

)

−U(U + U)

U − U

(
e00 + e0ss+ e0tt+ e0uu

)(
e00 + e0ss+ e0tt+ e0uu

)

−U(U + U)

U − U

(
e00 + e0ss+ e0tt+ e0uu

)(
e00 + e0ss+ e0tt+ e0uu

)

+
U(U + U)

U − U

(
e00 + e0ss+ e0tt+ e0uu

)(
e00 + e0ss+ e0tt+ e0uu

)
. (5.11d)
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All these equations should vanish to realize a non-supersymmetric solution. Computing

them, we obtain two solutions:





ReU = 0 , ImU, s1, t1, u1 : unfixed ,−Re(WQ) ≡ e00 + e0ss1 + e0tt1 + e0uu1 ,

s2 = −Re(WQ)√
−5e0s

, t2 = −Re(WQ)√
−5e0t

, u2 = −Re(WQ)√
−5e0u



 (5.12a)





ImU, u1, t1, u1, u2 : unfixed , ω ≡ −1 −
√

3i

2
,

ReU = iImU , s1 = −e00 + e0tt1 + e0uu1

e0s
, s2 = −e0uu2

e0s
ω2 , t2 =

e0uu2

e0t
ω





(5.12b)

Both of them are inconsistent. We conclude that there are no consistent solutions to

realize non-supersymmetric flux vacua in the stu-model. In principle, the structures of the

equations in multi moduli models are same as the stu-model. Then we also find that there

are no non-supersymmetric flux vacua in a generic multi moduli model.

We summarize that there are no consistent solutions to realize four-dimensional space-

time vacua only in the presence of geometric fluxes if the prepotential is restricted to (2.5).

It is inevitable to introduce corrections to the prepotential F .

6 Example 4: another model on SU(3)-structure manifold

Since we could not find any consistent solutions in section 5, we have to introduce a

deformation in the prepotential F in the following way:3

F(X) = Dǎb̌č

X ǎX b̌X č

X0
+ F̃(X) , (6.1)

where F̃(X) is also a holomorphic function of the projective coordinates of degree two.

Here we focus on a single modulus model tǎ ≡ t. The prepotential F and the Kähler

potential are given by

F =
XtXtXt

X0
+ F̃(X) , Xt = X0t , (6.2a)

K+ = − log
(
− i(t− t3) + iN

)
, (6.2b)

N ≡ F̃0 − F̃0 + tF̃t − tF̃ t , ∂tN ≡ F̃0t + tF̃tt − F̃ t . (6.2c)

For a minimal setup we introduce the deformed term F̃ in the following form:

F̃ = N1
(Xt)4

(X0)2
. (6.3)

Then the function N and its derivatives are

N = −2
(
N1t

4 −N1t
4 − 2N1t

3t+ 2N1tt
3
)
, (6.4a)

∂tN = −4
(
2N1t

3 − 3N1t
2t+N1t

3
)
. (6.4b)

3Insertion of the corrections is also discussed in [49].
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The function N gives a consistent solution of DtWQ = 0:

t1∗ = −2e00
e0

, t2∗ = 0 , ReU∗ = 0 , (6.5a)

WQ
∗ = e00 , (6.5b)

M∗ = −64i(e00)
4ImN1

(e0)4
, (K+)∗ = − log

(
− 64(e00)

4ImN1

(e0)4

)
, (6.5c)

Rt
ttt

∣∣
∗

=
(e0)

2

256

832(e00)
2(ImN1)

2 − 144e00e0ReN1 + 576(e00)
2(ReN1)

2 + 9(e0)
2

(e00)4ImN1
. (6.5d)

This is indeed a solution which gives the finite curvature. We have to set ImN1 to be

negative definite, otherwise the Kähler potential K+ is ill-defined. The scalar potential is

evaluated:

V∗ = −3 eK |W∗|2 =
1

[Re(CG0)]2
3(e0)

4

16(e00)2ImN1
. (6.6)

Due to the condition ImN1 < 0, V∗ provides the negative cosmological constant. In order

to satisfy the supergravity approximation, the value Re(CG0) should be very large. This is

nothing but the solution to realize a supersymmetric AdS vacuum in the compactification

on the SU(3)-structure manifold.

We also find that this scalar potential and the curvature tensor go to infinity when

we take the limit N1 → 0. The geometric flux charges deform the internal space. This is

the reason why we could not find any solutions in section 5. This result again differs from

that of [44]. If we set the torsion charge e0 to be zero, the internal manifold is reduced

to a Calabi-Yau three-fold with H-flux charges e00. Here we cannot take the large volume

limit (2.5) caused by the existence of H-flux. Then the deformation (6.1) is inevitable.

In this case the cosmological constant vanishes and a Minkowski vacuum appears. This is

consistent with that of [44].

7 Summary and discussions

In this paper we studied supersymmetric vacua in four-dimensional N = 1 supergravity de-

rived from type IIA string theory compactified on generalized geometries with SU(3)×SU(3)

structures. We started with a generic form of the scalar potential in N = 1 supergravity

which contains a superpotential and D-terms. The superpotential is built from two parts;

one is given by Ramond-Ramond flux charges, the other by (non)geometric flux charges.

We referred to the former as the Ramond-Ramond flux superpotential, and to the latter

as the (non)geometric flux superpotential.

To make the discussion clear, we first addressed a simple model with a prepotential

given by the intersection number in a way analogous to a model derived from a compactifi-

cation on Calabi-Yau three-fold in the large volume limit. We obtained two supersymmet-

ric vacua characterized by discriminants of the superpotentials. If the discriminants of the

Ramond-Ramond flux superpotential and of the (non)geometric flux superpotential are pos-

itive, a supersymmetric AdS vacuum is realized. The cosmological constant is given by the
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square root of the discriminant of the superpotential. This situation is akin to flux vacua at-

tractors in type IIB theory. On the other hand, if both of these two discriminants are nega-

tive, the cosmological constant vanishes and a supersymmetric Minkowski vacuum appears.

Next we explored consistent supersymmetric vacua in the absence of Ramond-Ramond

flux charges. In a simple model on generalized geometry with SU(3) × SU(3) structures,

we again obtained a supersymmetric AdS vacuum with a negative cosmological constant.

If the nongeometric flux charges are turned off in a situation where the prepotential is

described only in terms of the intersection number, there exist neither supersymmetric nor

non-supersymmetric solutions. Then we analyzed another model which has a prepotential

with a deformation term, obtaining a consistent supersymmetric AdS vacuum. This

implies that a model compactified on an SU(3)-structure manifold with torsion in the

absence of Ramond-Ramond flux charges differs from a model given by Calabi-Yau

compactification in the large volume limit.

There are four interesting issues which deserve further study in flux compactification

scenarios on generalized geometries: (i) In this paper there is no way to fix the real part of

the modulus U in the supersymmetric AdS vacua, partly because we restricted the number

of complex variables U Ǐ to one. If one incorporates more than one variable, there might

appear a richer structure in various functions, especially in the second derivatives of the

Kähler potential. In addition, it is also worth considering non-perturbative corrections

to stabilize all moduli. (ii) In a generic configuration with Ramond-Ramond flux charges

and nongeometric flux charges, we restricted the form of the prepotential governing the

chiral scalar variables tǎ in the same way as one does for the Calabi-Yau compactification

in the large volume limit. This corresponds to a model compactified on a parallelizable

twisted torus. One should also consider models arising from more generic prepotentials

to understand lower-dimensional effective theories of compactifications on (non)geometric

string backgrounds. (iii) The Bianchi identity of form fluxes should also be considered

seriously to study consistent configurations of D-branes and orientifold planes wrapped on

the internal space [12]. (iv) Duality transformations on generalized geometries are crucial in

elucidating the stringy origin of nongeometric fluxes in a more explicit way [16]. This way

also be helped by use of doubled space formalism [20, 22–24, 50]. Duality transformations

and nongeometric compactifications may also ultimately lead to a complete classification

of lower-dimensional gauged supergravities which are not derived from higher-dimensional

supergravities compactified on conventional geometries.
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A Supersymmetry parameters

We consider type IIA string theory compactified on generalized geometries. Let us

assume that ten-dimensional metric is given by ds210 = e2A gµν dxµdxν + gmn dymdyn,
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where gµν and gmn are the metric of the four-dimensional spacetime M3,1 and that of the

six-dimensional space M, respectively. We also introduced a warp factor A. For simplicity,

the warp factor is a constant. The ten-dimensional supersymmetry parameters ǫ1 and ǫ2

are split into two parts:

ǫ1 = ε1 ⊗ aη1
− + ε1 ⊗ aη1

+ ǫ2 = ε2 ⊗ bη2
+ + ε2 ⊗ bη2

− . (A.1)

Here εA with indices A = 1, 2 are Weyl fermions as the four-dimensional supersymmetry

parameters whose charge conjugates are εcA ≡ εA. The ηA± are SU(4) Weyl spinors in

the six-dimensional internal space with (ηA±)c = (ηA±)∗. The chirality of ǫ1 (ǫ2) in type

IIA theory is negative (positive) [7, 15]. The two complex scale parameters a and b are

normalization factors [12, 15] with |a|2 + |b|2 = c+ and |a|2 − |b|2 = c−. Without loss of

generality we can set c+ = 1. Indeed, the coefficients a and b would be related to the

warp factor A in N = 1 vacua [6]. In order to obtain N = 2 and N = 1 supersymmetries

in four-dimensional spacetime, the SU(4) spinors are reduced to SU(3) invariant spinors

which are interpreted as Killing spinors on M.

B Generalized geometries with SU(3) × SU(3) structures

B.1 Generalized complex structures and pure spinors

In the splitting of type IIA supersymmetry parameters (A.1), there emerges a pair of

SU(3) invariant spinors η1
+ and η2

+. These two spinors are related to each other via the

expression [7]

η2
+ = c‖η

1
+ + c⊥(v + iv′)mγmη

1
− , |c‖|2 + |c⊥|2 = 1 , (B.1)

where γm is the Cliff(6) gamma matrix acting on ηA± . The two vectors v and v′ are defined

by the bilinear form of the spinors as (v − iv′)m = η1†
+ γ

mη2
−. The coefficients c‖ and c⊥

depend on the coordinates of the internal space M. This pair of spinors defines a pair

of SU(3)-structure groups, where the structure group is the group in which the transition

functions of the tangent bundle TM take their values. If c⊥ = 0 at any point on M, the

two spinors coincide with each other and the structure group is reduced to a single SU(3).

As usual one defines the almost complex structures in terms of the SU(3) invariant spinors

as (JA)mn = −2i ηA†
+ γm

nη
A
+ . If η1

+ = η2
+ at any points, the almost complex structures J1

also coincides with J2. We refer to M with a single almost complex structure as a manifold

with a single SU(3)-structure, or simply an SU(3)-structure manifold. On the other hand,

if c⊥ 6= 0 at some points on M, there exists a pair of almost complex structures on M, and

we refer to this as a manifold with a pair of SU(3)-structures.

To go beyond an ordinary almost complex structure, one considers a space TM⊕T ∗M

and introduces generalized almost complex structures J± which give rise to a mapping

J± : TM ⊕ T ∗
M → TM ⊕ T ∗

M. Since the basis of the space TM ⊕ T ∗
M is given by

{dxm∧, ι∂n
}, the signature of this space is (6, 6). Let us first describe J± by means of

sections of spinor bundles associated with TM ⊕ T ∗
M:

J Λ
± Σ =

〈
ReΦ±,Γ

Λ
ΣReΦ±

〉
. (B.2)
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Here we introduced complex SU(3, 3) invariant spinors Φ±, the Cliff(6, 6) gamma matrix

ΓΛ and its antisymmetrized product ΓΛΣ = 1
2(ΓΛΓΣ −ΓΣΓΛ), where the indices are raised

and lowered with the SO(6, 6) invariant metric LΛΣ. Since the irreducible representation

of Spin(6, 6) spinor is Majorana-Weyl, Φ+ (Φ−) can be assigned to a Weyl spinor with

positive (negative) chirality. The two Weyl spinor bundles on TM ⊕ T ∗
M are isomorphic

to the spaces of even/odd forms ∧even/oddT ∗
M. The SU(3, 3) invariant Weyl spinors Φ±

are pure since they are annihilated by half of the Cliff(6, 6) gamma matrices ΓΛ. Due to

the isomorphism, the bracket in (B.2) can be expressed by the Mukai pairing
〈
Ap, Bq

〉
≡ [Ap ∧ λ(Bq)]top form , λ(Bq) ≡ (−1)[

q

2
]Bq , (B.3)

where Ap and Bq are arbitrary p-form and q-form, respectively. When a generalized almost

complex structure J is defined, we refer to the space M as a generalized (almost complex)

geometry. The two Weyl spinors Φ± can be described in terms of the supersymmetry

parameters ηA± in (A.1) [7]:

Φ± = e−BΦ0
± , Φ0

± = 8η1
+ ⊗ η2†

± ≡
6∑

k=0

1

k!

(
η2†
± γm1···mk

η1
+

)
γmk···m1 , (B.4)

where B is a two-form. Actually the bilinear forms Φ0
± satisfy the following differential

equations in N = 1 vacua derived from type IIA theory (see [6, 12, 15])

e−2A+φ(d −H∧)
(
e2A−φΦ0

+

)
= −2µReΦ0

− , (B.5a)

e−2A+φ(d −H∧)
(
e2A−φΦ0

−

)
= −3i Im(µΦ0

+) +
1

16
eφ
[
c−F

even + ic+ ∗ λ(F even)
]
, (B.5b)

where F even = F0 +F2 +F4 +F6 is a sum of the Ramond-Ramond forms. The µ gives the

cosmological constant Λ = −|µ|2 in four-dimensional spacetime. Note that the structure

group of the generalized geometry is SU(3) × SU(3) if c⊥ 6= 0 at some points on M, or

SU(3) if c⊥ = 0 at any points on M.

It is also known that the spaces of Φ± are given by special Kähler geometries of local

type [7]. This implies that the generalized geometry has the moduli space given by the

product of the two Hodge-Kähler geometries whose Kähler potentials K± are4

K+ = − log i

∫

M

〈
Φ+,Φ+

〉
, K− = − log i

∫

M

〈
Φ−,Φ−

〉
. (B.6)

We assign the special Kähler geometries given by Φ± to M±, respectively. One can intro-

duce projective coordinates XA and a prepotential F on M+ (and projective coordinates

ZI and a prepotential G on M−). The prepotentials F and G are functions of holomorphic

and homogeneous of degree two in the projective coordinates. Since the two Weyl spinors

Φ± are isomorphic to the even and odd forms, they are expanded in terms of basis forms:

Φ+ = XAωA −FAω̃
A , Φ− = ZIαI − GIβ

I , (B.7)

where ωA and ω̃A are even real basis forms (i.e., zero-, two-, four- and six-forms), while

αI and βI are odd real basis forms (one-, three- and five-forms). The coefficients are

interpreted as the projective coordinates and derivatives of the prepotentials.

4Here these Kähler potentials are reduced to functions in four-dimensional spacetime [7].
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B.2 Property of Special Kähler geometries

The projective coordinates and the prepotentials on the special Kähler geometries are

described in terms of period integrals of the Mukai pairing:

XA =

∫

M

〈
Φ+, ω̃

A
〉
, FA =

∂F
∂XA

=

∫

M

〈
Φ+, ωA

〉
, (B.8a)

ZI =

∫

M

〈
Φ−, β

I
〉
, GI =

∂G
∂ZI

=

∫

M

〈
Φ−, αI

〉
, (B.8b)

where we used the symplectic structure among the basis forms




∫

M

〈ωA, ωB〉
∫

M

〈ωA, ω̃
B〉

∫

M

〈ω̃A, ωB〉
∫

M

〈ω̃A, ω̃B〉


 =

(
0 δA

B

−δA
B 0

)
, A,B = 0, 1, . . . , b+ , (B.9a)




∫

M

〈αI , αJ 〉
∫

M

〈αI , β
J 〉

∫

M

〈βI , αJ 〉
∫

M

〈βI , βJ 〉


 =

(
0 δI

J

−δI
J 0

)
, I, J = 0, 1, . . . , b− . (B.9b)

Then the Kähler potentials K± in (B.6) are described as

K+ = − log i
(
XAFA −XAFA

)
, K− = − log i

(
ZIGI − ZIGI

)
. (B.10)

We can choose a set of local coordinate frames of M± as XA = (X0,Xa) = (X0,X0ta)

and ZI = (Z0, Zi) = (Z0, Z0zi), where A,B,C, . . . and a, b, c, . . . are projective and local

coordinate indices, respectively. The properties of their functions include

∂a ≡ ∂

∂ta
, Dc ≡ ∂c + ∂cK+ , (B.11a)

FA = NABX
B , DaFB = NBCDaX

C , (K+)ab = ∂a∂bK+ , (B.11b)

eK+(K+)abDaX
CDbX

D = −1

2
[(ImN )−1]CD − eK+XCXD , (B.11c)

Cabc = eK+
(
∂aX

A
)(
∂bX

B
)(
∂cX

C
)
FABC(X) , FABC =

∂3F
∂XA∂XB∂XC

, (B.11d)

where NAB is the period matrix on the moduli space M+. Here Dc is the Kähler covariant

derivative. Details of the special Kähler geometry can be found, for instance, in [15, 17, 45].

Notice that Cabc is a totally symmetric Kähler covariantly holomorphic tensor on M+.

B.3 (Non)geometric flux charges

Once the NS-NS three-form flux H is incorporated into the six-dimensional internal space

M, this space is no longer a Calabi-Yau three-fold.5 Although this flux does not modify

the SU(3)-structure group, a non-constant dilaton, a warp factor and torsion are induced.

We call them geometric fluxes.

5In a very restricted case, the internal space becomes a warped Calabi-Yau manifold. Such a geometry

appears in type IIB theory flux compactification scenario [10, 38].
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In the case of the generalized geometry with SU(3) × SU(3) structures, we should

introduce a set of charges pI
A and qIA [7], called the charges of “nongeometric fluxes” as

well as geometric electric- and magnetic-charges eIA and mA
I [22]. One has to generalize

the exterior derivative d to D in the following way:

DωA ∼ mA
IαI − eIAβ

I , Dω̃A ∼ −qIAαI + pI
AβI , (B.12a)

DαI ∼ pI
AωA + eIAω̃

A , DβI ∼ qIAωA +mA
I ω̃A , (B.12b)

where ∼ means equality up to terms vanishing inside the Mukai pairing (B.3) in com-

putations of the Kähler potentials and superpotentials. Here D is described as D ≡
d − Hfl ∧ −f · −Q · −Rx, where Hfl is the NS-NS three-form flux6 Hfl ≡ H − dB,

while f , Q and R are called the (non)geometric fluxes acting on an arbitrary k-form

C as (f · C)m1···mk+1
≡ fa

[m1m2
C|a|m3···mk+1], (Q · C)m1···mk−1

≡ Qab
[m1

C|ab|m2···mk−1] and

(RxC)m1···mk−3
≡ RabcCabcm1···mk−3

. Actually the geometric flux f gives a non-trivial

structure constant in gauged supergravity via the Scherk-Schwarz compactifications [18],

while the fluxes Q and R provide the nongeometric string backgrounds [22] via duality

transformations in string theory.

Imposing the nilpotency D2 = 0, we obtain a set of relations among the (non)geometric

flux charges:

0 = qIAmA
J −mA

IqIA , 0 = pI
AeAJ − eIApJ

A , 0 = pI
AmA

J − eIAq
JA , (B.13a)

0 = qIApI
B − pI

AqIB , 0 = mA
IeIB − eIAmB

I , 0 = mA
IpI

B − eIAq
IB . (B.13b)

C Type IIA theory compactified on generalized geometry

We analyze four-dimensional supergravity compactified on the generalized geometry with

SU(3)×SU(3) structures by using the notation and conventions in [15]. First we construct

N = 1 Kähler potential, superpotential and D-terms in the language of N = 2 theory.

Then we truncate physical degrees of freedom via O6 orientifold projection.

N = 2 Killing prepotentials are useful to derive the superpotential and the D-terms.

Here we briefly review the works [7, 15]. The Killing prepotentials Px appear in supersym-

metry variations of four-dimensional gravitinos ψAµ as

δψAµ = ∇µεA − SAB γ
(4)
µ εB + . . . , (C.1a)

SAB =
i

2
e

K+

2 (σx)A
C ǫBC Px =

i

2
e

K+

2

(
P1 − iP2 −P3

−P3 −P1 − iP2

)
, (C.1b)

where dots indicate irrelevant parts which do not contribute to the superpotential. Here

γ
(4)
µ is the Dirac gamma matrix in four dimensions, (σx)A

B with x = 1, 2, 3 are the SU(2)

Pauli matrices, and ǫAB is the SU(2) invariant metric utilized to raise and lower indices

A. Explicit forms of the Killing prepotentials Px are written in terms of the Weyl spinors

6The cohomology of the SU(3)-structure manifold defines the topological indices such as the Dirac index,

the Euler characteristics and the Hirzebruch signature [51].
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Φ± and the Ramond-Ramond field strength G. In the case of compactifications on the

generalized geometry with SU(3) × SU(3) structures, these are given as follows:7

P1 − iP2 = 2e
K−

2
+ϕ

∫

M

〈
Φ+,DΦ−

〉

= 2e
K−

2
+ϕ
[(
ZIeIA − GImA

I
)
XA +

(
ZIpI

A − GIq
IA
)
FA

]
, (C.2a)

P1 + iP2 = 2e
K−

2
+ϕ

∫

M

〈
Φ+,DΦ−

〉

= 2e
K−

2
+ϕ
[(
ZIeIA − GImA

I
)
XA +

(
ZIpI

A − GIq
IA
)
FA

]
, (C.2b)

P3 = − 1√
2

e2ϕ

∫

M

〈
Φ+, G

〉

= e2ϕ
[(
eRRA − ξIeIA + ξ̃ImA

I
)
XA −

(
mA

RR + ξIpI
A − ξ̃Iq

IA
)
FA

]
. (C.2c)

If the six-dimensional internal space is a generalized geometry with a single SU(3)-structure,

the generalized differential operator D in (C.2) is reduced to dHfl .

If localized D-branes are absent, it is convenient to define the Ramond-Ramond field

strength G as a modification of the field strength F even multiplied with the exponent of

the B-field [7, 53]:

F even
n = (eBG)n = dCn−1 −H ∧ Cn−3 , C = eBA , (d −H∧)F even = 0 . (C.3)

In the generalized geometry with SU(3) × SU(3) structures in the democratic descrip-

tion [53], the Ramond-Ramond field strength G is given in terms of the generalized differ-

ential operator D as

G ≡ G0 +G2 +G4 +G6 = Gfl + DA , (C.4)

where Gfl and A are the intrinsic part of the field strength and the potential, respectively.

Both of them are expanded in terms of the basis of forms as8

Gfl =
√

2
(
mA

RRωA − eRRAω̃
A
)
, A =

√
2
(
ξIαI − ξ̃Iβ

I
)
, (C.5)

where eRRA and mA
RR are electric- and magnetic-charges of the Ramond-Ramond fluxes,

respectively. The fields ξI and ξ̃I appear as scalar fields in four dimensions.

Let us elaborate the superpotential. The N = 1 supersymmetry parameter ε is

defined by the linear combination of the two N = 2 supersymmetry parameters in the

following way:

ε = nAεA . (C.6)

where nA = (a, b) is a two component vector given by the coefficients a and b in (A.1).

In the same way as the linear combination (C.6), the N = 2 gravitinos are also linearly

7For detailed discussions, see [7] for the case of generalized geometry with a single SU(3)-structure, or [7]

for that of generalized geometry with SU(3) × SU(3) structures
8Our notation differs from that of [15] by a sign, i.e., eRRA in [15] becomes −eRRA, etc.
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combined into the N = 1 gravitino as ψµ = nAψAµ. Then the N = 1 supersymmetry

variation is described in terms of the linear combination of the N = 2 variations (C.1) in

such a way as δψµ = ∇µε − nASAB n
∗B γ

(4)
µ εc. Since this form is generically expressed as

δψµ = ∇µε− e
K
2 W γ

(4)
µ εc [15], we obtain an explicit form of the superpotential W as

e
K
2 W = nASAB n

∗B =
i

2
e

K+

2

[
a2
(
P1 − iP2

)
− b2

(
P1 + iP2

)
− 2abP3

]
. (C.7)

This form, however, carries redundant information arising from spin 3/2 multiplets

which should not appear in an ordinary N = 1 supergravity. We define a variable

ψ̃µ = bψ1µ − aψ2µ which is orthogonal to the ordinary gravitino ψµ in order that the

fermion ψ̃µ would be a component of the spin 3/2 multiplet. Imposing the invariance on

the supersymmetry variation δψ̃µ = 0, we obtain [15]

0 = e
K+

2

[
ab
(
P1 − iP2

)
+ ab

(
P1 + iP2

)
+ c−P3

]
. (C.8)

Substituting (C.8) into (C.7), we write down the correct form of the superpotential

e
K
2 W =

i

4ab
e

K+

2

[
ab
(
P1 − iP2

)
− ab

(
P1 + iP2

)
− P3

]
. (C.9)

Here we have to discuss the four-dimensional N = 1 Kähler potential K in the left-hand

side in (C.9). In terms of the four-dimensional dilaton ϕ, the function K is defined as [11]

K = K+ + 4ϕ = − log i
(
XAFA −XAFA

)
+ 4ϕ . (C.10)

There is a relation among the ten-dimensional dilaton φ, the Kähler potentials K± and

the four-dimensional dilaton ϕ as e−K± = 8e−2ϕ+2φ [15]. We assumed that φ does not

depend on the internal coordinates. Substituting (C.2) and (C.10) into (C.9), we rewrite

the superpotential W as9

W =
i

4ab

∫

M

〈
Φ+,

1√
2
Gfl + DΠ−

〉
, (C.11a)

Π− ≡ 1√
2
A+ i Im(CΦ−) , C ≡

√
2ab e−φ = 4ab e

K−

2
−ϕ . (C.11b)

Here C is called a compensator of the dilaton φ (or ϕ with the Kähler potential K−). This

is introduced to gauge away scale symmetry of the Weyl spinor Φ− [15]. (The spaces of

the spinors Φ± are the special Kähler geometry of local type [12].) Using the compensator

C, we rewrite the four-dimensional dilaton ϕ as

e−2ϕ =
|C|2

16|a|2|b|2 e−K− =
i

16|a|2|b|2
∫

M

〈
CΦ−, CΦ−

〉

=
1

8|a|2|b|2
[
Im(CZI)Re(CGI) − Re(CZI)Im(CGI)

]
. (C.12)

9We used the same expressions of the real and the imaginary part of CΦ− as in [15].
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We also rewrite the following function in terms of the basis forms and the flux charges:

1√
2
Gfl + DΠ− ∼

(
mA

RR + U IpI
A − ŨIq

IA
)
ωA −

(
eRRA − U IeIA + ŨImA

I
)
ω̃A . (C.13)

It is useful to introduce

U I ≡ ξI + i Im(CZI) , ŨI ≡ ξ̃I + i Im(CGI) . (C.14)

Performing the integral in the superpotential (C.11a), we obtain the following form in the

language of N = 2 theory:

W = − i

4ab

[
XA
(
eRRA − U IeIA + ŨImA

I
)
−FA

(
mA

RR + U IpI
A − ŨIq

IA
)]
. (C.15)

Later we truncate N = 2 supersymmetry and reduce physical degrees of freedom.

In a similar way we evaluate an explicit form of the D-term from the supersymmetry

variation of the gaugino. The supersymmetry truncation yields the N = 1 gaugino χA

as a linear combination of the N = 2 gauginos χaB as χA = −2 e
K+

2 DbX
A(nA ǫAB χ

aB).

Performing N = 1 supersymmetry variation and comparing a generic form of the N = 1

supersymmetry transformation rule given by δχA = ImFA
µν γ

µνε + iDAε, we obtain an

explicit form of the D-term DA in the N = 2 language [15]:

DA = e2ϕ
(
[(ImN )−1]AB + 2eK+XAXB

)

×
{
Re(CZI)[eIB + NBCpI

C ] − Re(CGI)[mB
I + NBCq

IC ]

+ c−
[
(eRRB − ξIeIB + ξ̃ImB

I) −NBC(mC
RR + ξIpI

C − ξ̃Iq
IC)
]}
. (C.16)

D Orientifold projection

It is necessary to introduce orientifold planes lying on the internal space in order to realize

the tadpole cancellation and to evade a no-go theorem.10 [52] Due to the existence of

the orientifold planes, the number of the supersymmetry parameters and physical degrees

of freedom are truncated. This procedure is called the O6 orientifold projection. The

orientifold projection affects the coefficients a and b in (A.1) as (see, for instance, [12, 45])

a = b eiθ , |a|2 = |b|2 =
1

2
, (D.1)

where θ is an arbitrary phase parameter.

The scalar components of vector multiplets and hypermultiplets in N = 2 supergrav-

ity are governed by the special Kähler geometry and the quaternionic geometry, respec-

tively [17]. In type IIA theory compactified on Calabi-Yau three-fold, the former (latter)

geometry is described by the moduli space of the Kähler form (the complex structure).

In the theory compactified on generalized geometry, such two geometries are given by the

spaces M± discussed in the previous appendices [11, 15]. Let us specify the supersym-

metry truncation from N = 2 to N = 1 via the O6 orientifold projection on generalized

10We do not analyze the Bianchi identities themselves in this paper. A detailed discussions can be found,

for instance, in [12].

– 28 –



J
H
E
P
0
5
(
2
0
0
9
)
0
9
3

geometries [15]. To preserve half of the supersymmetry, we set a = b eiθ as in (D.1) and

project out some physical degrees of freedom:

ξÎ = 0 = Im(CZ Î) = Re(CGÎ) , ξ̃Ǐ = 0 = Re(CZ Ǐ) = Im(CGǏ) , (D.2a)

where the indices I = 0, 1, . . . , b− are split into I = (Î , Ǐ). Due to this, each N = 2

hypermultiplet in type IIA is decomposed into two N = 1 chiral multiplets with opposite

spins. In addition, N = 2 vector multiplets with indices A = (0, a) are truncated as

AǍ
µ = 0 , XÂ = 0 , (D.2b)

FÂ = 0 , NǍB̂ = 0 ; (K+)
ǎb̂

= 0 ,DǎX
B̂ = DâX

B̌ = 0 . (D.2c)

Note that one has to truncate out the graviphoton A0
µ. We split the indices A = 0, 1, . . . , nv

(where nv = b+) as Ǎ = 0, 1, . . . , nch and Â = 1, . . . , n̂v = nv − nch (with a restriction

nv ≥ nch). This means that N = 2 vector multiplets are decomposed into N = 1 vector

multiplets and chiral multiplets with respective numbers nv: Some degrees of freedom are

projected out in such a way as nv → n̂v in the vector multiplets, and as nv → nch in

the chiral multiplets. Imposing (D.2a) and (D.2b) on Φ+ and on Π−, we obtain Φ+ =

XǍωǍ −FǍω̃
Ǎ and Π− = U ǏαǏ − ŨÎβ

Î , respectively. Substituting them into the previous

results, we write down the reduced functions:

W = − i

4ab

[
XǍ

(
eRRǍ − U ǏeǏǍ + ŨÎmǍ

Î
)
−FǍ

(
mǍ

RR + U ǏpǏ
Ǎ − ŨÎq

ÎǍ
)]

, (D.3a)

K = K+ + 4ϕ , (D.3b)

K+ = − log i
(
XǍFǍ −XǍF Ǎ

)
, (D.3c)

e−2ϕ =
1

2

[
Im
(
CZ Ǐ

)
Re (CGǏ) − Re

(
CZ Î

)
Im(CGÎ)

]
. (D.3d)

Substituting the truncation rules (D.2a) and (D.2b) into (C.16) with setting DA → DÂ,

we also obtain the D-term in N = 1 theory as

DÂ = e2ϕ
[
(ImN )−1

]ÂB̂
{
Re
(
CZ Î

) [
eÎB̂ + NB̂ĈpÎ

Ĉ
]
− Re (CGǏ)

[
mB̂

Ǐ + NB̂Ĉq
ǏĈ
]}

.

(D.3e)

We should notice that the D-term (D.3e) is a complex because of the existence of an (anti-

)holomorphic function NB̂Ĉ . This appears in [17, 54]. This situation generically occurs

when complex forms of flux variables are turned on. Then we should carefully define the

scalar potential from this D-term. We also substituted c− = |a|2 − |b|2 = 0 by the O6

orientifold projection [15].
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